Sains Malaysiana 54(3)(2025): 721-731
http://doi.org/10.17576/jsm-2025-5403-09
Analisis Pencemaran Mikroplastik dalam Ikan Tongkol (Euthynnus affinis) di Perairan Semenanjung Malaysia
(Analysis of
Microplastic Pollution in Kawakawa Fish (Euthynnus affinis) in the Waters of Peninsular Malaysia)
SINORETHA SINING1, ADLIN I. ARBA’IN1,
MAISARAH I. AMIZURI1, AZWAN MAT LAZIM2, FUAD M. MISKON3,
FIKRIAH FAUDZI4, MAZLAN ABD. GHAFFAR5,6 & SYAFIQ M.
MUSA1,7,*
1Marine Science Programme, Department of Earth
Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Department of Chemical Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Institute of Oceanography and Maritime Studies,
International Islamic University Malaysia (Kuantan Campus), 25200 Kuantan,
Pahang, Malaysia
4Department of Marine Science, International Islamic
University Malaysia (Kuantan Campus), 25200 Kuantan, Pahang, Malaysia
5Faculty of Science and
Marine Environment, Universiti Malaysia Terengganu,
21030 Kuala Terengganu, Terengganu, Malaysia
6UMT-OUC Joint Academic Center for Marine Studies, Institute of Climate Adaptation
and Marine Biotechnology (ICAMB), Universiti Malaysia
Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
7Marine Ecosystem Research Center (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
Diserahkan: 8 Ogos 2024/Diterima:
16 Disember 2024
Abstrak
Pencemaran mikroplastik dalam persekitaran marin telah mencapai tahap yang semakin membimbangkan di seluruh dunia.
Kajian mengenai pencemaran mikroplastik pada organisma marin masih kurang di Malaysia, terutama bagi spesies yang turut menjadi makanan laut dan sajian utama di Malaysia, contohnya ikan tongkol (Euthynnus affinis). Sebanyak 207 organ telah diekstrak keluar daripada 69 ekor ikan tongkol dengan tiga organ diambil daripada setiap ikan (iaitu saluran gastrousus, insang dan kulit)
yang telah disampel dari empat kawasan pendaratan ikan utama di
Malaysia, iaitu Kuala Terengganu, Terengganu;
Kuantan, Pahang; Mersing, Johor; dan Kuala Selangor, Selangor. Hasil kajian menunjukkan kulit ikan tongkol mempunyai kandungan mikroplastik tertinggi (1.52 ±
0.91 mikroplastik per gram) berbanding organ insang dan saluran gastrousus. Jenis mikroplastik yang paling dominan dijumpai adalah berbentuk serat (89.95%), diikuti dengan serpihan (10.05%). Warna mikroplastik paling banyak dikenal pasti ialah hitam(61.58%) dan biru (21.39%). Julat saiz 0.01-1.00 mm merupakan saiz mikroplastik yang
paling banyak dijumpai. Kelimpahan mikroplastik berkorelasi positif dengan saiz badan ikan menunjukkan kandungan mikroplastik pada ikan tongkol semakin bertambah seiring dengan pertambahan umur dan saiz badan ikan. Data kajian ini menemukan mikroplastik pada kesemua organ ikan tongkol yang dikaji, maka adalah disarankan agar kulit luaran ikan perlu dibersihkan dan organ dalaman seperti insang dan saluran gastrousus perlu disiang terlebih dahulu sebelum digunakan dalam sebarang penyediaan hidangan makanan bagi mengurangkan risiko kemasukan mikroplastik terhadap manusia melalui pemakanan ikan tongkol ini.
Kata kunci: Ikan komersial;
ikan tongkol; mikroplastik; pencemaran marin
Abstract
Microplastic pollution in the marine environment has reached increasingly
alarming levels globally. Research on microplastic contamination in marine
organisms remains limited in Malaysia, particularly for species that are also consumed as seafood and
are staple dishes, such as the kawakawa fish (Euthynnus affinis). This study extracted a total of 207 organs from
69 kawakawa fish, with three organs (i.e., gastrointestinal tract, gills, and
skin) taken from each fish sampled from four major fish landing sites in
Malaysia: Kuala Terengganu, Terengganu; Kuantan, Pahang; Mersing, Johor; and
Kuala Selangor, Selangor. The results showed that the skin of the kawakawa fish had the highest microplastic
content (1.52 ± 0.91 microplastics per gram) compared to the gill and
gastrointestinal tract organs. The predominant type of microplastic identified was
fiber (89.95%), followed by fragments (10.05%). The most frequently detected
colors of microplastics were black (61.58%) and blue (21.39%). Microplastics in
the size range of 0.01-1.00 mm were the most commonly found. There was a
positive correlation between the abundance of microplastics and the body size
of the fish, indicating that microplastic content in kawakawa fish increases
with age and body size. The
data from this study found microplastics in all the organs of the kawakawa fish examined, therefore, it
is recommended that the outer skin of kawakawa fish be thoroughly cleaned, and internal organs
such as the gills and gastrointestinal tract be gutted before being
used in any food preparation to reduce the risk of microplastic ingestion by
humans through the consumption of this fish.
Keywords: Commercial fish; kawakawa fish; marine
pollution; microplastic
RUJUKAN
Abbasi,
S., Soltani, N., Keshavarzi, B., Moore, F., Turner, A. & Hassanaghaei, M.
2018. Microplastics in different tissues of fish and prawn from the Musa
Estuary, Persian Gulf. Chemosphere 205: 80-87.
Aziz,
N.A., Ghazali, A., Yunus, K.B., Annual, Z.F., Ahmad, A. & Chuan, O.M. 2020.
Longtail tuna (Thunnus tonggol) consumption frequency in Terengganu, Malaysia. Open Journal of Marine Science 10:
141-148.
Badgie,
D., Samah, M.A.A., Manaf, L.A. & Muda, A.B. 2012. Assessment of municipal
solid waste composition in Malaysia: Management, practice, and challenges. Polish Journal of Environmental Studies 21(3):
539-547.
Bergmann,
M., Gutow, L. & Klages, M. 2015. Marine
Anthropogenic Litter. Springer Nature.
Betts,
K. 2008. Why small plastic particles
may pose a big problem in the oceans. Environmental Sciences &
Technology 42(24): 8995.
Browne,
M.A. 2015. Sources and pathways of microplastics to habitats. In Marine Anthropogenic Litter, disunting oleh Bergmann, M., Gutow, L. & Klages, M. Springer, Cham. hlm. 229-244.
Capone,
A., Petrillo, M. & Misic, C. 2020. Ingestion and elimination of
anthropogenic fibres and microplastic fragments by the European anchovy (Engraulis encrasicolus)
of the NW Mediterranean Sea. Marine
Biology 167: 166.
Compa,
M., Ventero, A., Iglesias, M. & Deudero, S. 2018. Ingestion of
microplastics and natural fibres in Sardina
pilchardus (Walbaum, 1792) and Engraulis
encrasicolus (Linnaeus, 1758) along the Spanish Mediterranean coast. Marine Pollution Bulletin 128: 89-96.
Chen,
J-C., Fang, C., Zheng, R-H., Hong, F-K., Jiang, Y-L., Zhang, M., Li, Y., Hamid,
F.S., Bo, J. & Lin, L-S. 2021. Microplastic pollution in wild commercial
nekton from the South China Sea and Indian Ocean, and its implication to human
health. Marine Environmental Research 167: 105295.
Chen, Y., Wen, D., Pei,
J., Fei, Y., Ouyang, D., Zhang, H. & Luo, Y. 2020. Identification and
quantification of microplastics using Fourier-transform infrared spectroscopy: Current
status and future prospects. Current Opinion in Environmental Science
& Health 18: 14-19.
Collette,
B. 2001. Scombridae. Tunas (also, albacore, bonitos, mackerels, seerfishes, and
wahoo). FAO Species Identification Guide
for Fishery Purposes. The Living Marine Resources of the Western Central
Pacific 6: 3721-3756.
Comnea-Stancu, I.R., Wieland, K.,
Ramer, G., Schwaighofer, A. & Lendl, B. 2017. On
the identification of rayon/viscose as a major fraction of microplastics in the
marine environment: Discrimination between natural and manmade cellulosic fibers using Fourier transform infrared spectroscopy. Applied Spectroscopy 71(5): 939-950.
Cronin,
T.W., Johnsen, S., Marshall, N.J. & Warrant, E.J. 2014. Visual Ecology. Princeton: Princeton
University Press.
Daniel,
D.B., Ashraf, P.M. & Thomas, S.N. 2020. Microplastics in the edible and
inedible tissues of pelagic fishes sold for human consumption in Kerala, India. Environmental Pollution 266: 115365.
Deng,
J., Guo, P., Zhang, X., Su, H., Zhang, Y., Wu, Y.
& Li, Y. 2020. Microplastics and accumulated heavy metals in restored
mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China). Marine Pollution Bulletin 159: 111482.
Egbeocha, C.O.,
Malek, S., Emenike, C.U. & Milow, P. 2018. Feasting on microplastics: Ingestion
by and effects on marine organisms. Aquatic
Biology 27: 93-106.
Evangeliou, N., Grythe, H., Klimont, Z., Heyes,
C., Eckhardt, S., Lopez-Aparicio, S. & Stohl, A. 2020. Atmospheric
transport is a major pathway of microplastics to remote regions. Nature Communications 11(1): 3381.
Food and Agriculture Organization of the United
Nations (FAO). 2018. The State of World Fisheries and
Aquaculture 2018 - Meeting the Sustainable Development Goals. CC BY-NC-SA
3.0 IGO. Food and Agriculture
Organization of the United Nations FAO.
Feng,
Z., Zhang, T., Li, Y., He, X., Wang, R., Xu, J. & Gao, G. 2019. The
accumulation of microplastics in fish from an important fish farm and
mariculture area, Haizhou Bay, China. Science of The Total Environment 696:
133948.
Ghani,
L.A., Saputra, J., Muhammad, J., Zulkarnaen, I. & Alfiady, T. 2020. An
investigation of waste management (phosphorus) and its relationship to the
local economic circulars in Terengganu, Malaysia. International Journal of Advanced Science and Technology 29(7):
1675-1685.
Habib,
R.Z., Kindi, R.A., Salem, F.A., Kittaneh, W.F.,
Poulose, V., Iftikhar, S.H., Mourad, A.H.I. & Thiemann, T. 2022.
Microplastic contamination of chicken meat and fish through plastic cutting
boards. International Journal of
Environmental Research and Public Health 19(20): 13442.
Hale,
R.C., Seeley, M.E., La Guardia, M.J., Mai, L. & Zeng, E.Y. 2020. A global
perspective on microplastics. Journal of
Geophysical Research: Oceans 125(1): e2018JC014719.
Hidalgo-Ruz,
V., Gutow, L., Thompson, R.C. & Thiel, M. 2012. Microplastics in the marine
environment: A review of the methods used for identification and
quantification. Environmental Science
& Technology 46(6): 3060-3075.
Huang,
J.S., Koongolla, J.B., Li, H.X., Lin, L., Pan, Y.F.,
Liu, S., He, W.H., Maharana, D. & Xu, X.R. 2020. Microplastic accumulation
in fish from Zhanjiang mangrove wetland, South China. Science of The Total Environment 708: 134839.
Ibrahim,
N.R. & Mat Noordin, N.N. 2020. Understanding the issue of plastic waste
pollution in Malaysia: A case for human security. Journal of Media and Information Warfare (JMIW) 13(1): 105-140.
Jaafar, N., Azfaralariff, A., Musa, S.M., Mohamed, M., Yusoff, A.H. &
Lazim, A.M. 2021. Occurrence, distribution and characteristics of microplastics
in gastrointestinal tract and gills of commercial marine fish from
Malaysia. Science of the Total Environment 799: 149457.
Jaafar, N., Musa, S.M., Azfaralariff, A., Mohamed, M., Yusoff, A.H. & Lazim,
A.M. 2020. Improving the efficiency of post-digestion method in extracting
microplastics from gastrointestinal tract and gills of fish. Chemosphere 260:
127649.
Jambeck, J.R.,
Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady,
A., Narayan, R. & Law, K.L. 2015. Plastic waste inputs from land into the
ocean. Science of The Total Environment 347(6223): 768-771.
Kapp,
K.J. & Yeatman, E. 2018. Microplastic hotspots in the Snake and Lower
Columbia Rivers: A journey from the Greater Yellowstone Ecosystem to the
Pacific Ocean. Environmental Pollution 241: 1082-1090.
Karami,
A., Golieskardi, A., Ho, Y. B., Larat, V. & Salamatinia, B. 2017.
Microplastics in eviscerated flesh and excised organs of dried fish. Sci Reports 7(1): 5473.
Karbalaei, S., Golieskardi, A., Hamzah, H.B., Abdulwahid, S., Hanachi, P.,
Walker, T.R. & Karami, A. 2019. Abundance and characteristics of
microplastics in commercial marine fish from Malaysia. Marine Pollution Bulletin 148: 5-15.
Leads,
R.R., Burnett, K.G. & Weinstein, J.E. 2019. The effect of microplastic
ingestion on survival of the grass shrimp Palaemonetes
pugio (Holthuis, 1949) challenged with Vibrio
campbellii. Environmental Toxicology
and Chemistry 38(10): 2233-2242.
Liang,
Y., Tan, Q., Song, Q. & Li, J. 2021. An analysis of the plastic waste trade
and management in Asia. Waste Management 119: 242-253.
Lusher,
A.L. & Covernton, G.A. 2022. Microplastics in fish
and seafood species. Plastics and the
Ocean: Origin, Characterization, Fate, and Impacts, disunting oleh Andrady, A.L. hlm.
Wiley. 367-388.
Lusher,
A.L., Mchugh, M. & Thompson, R.C. 2013.
Occurrence of microplastics in the gastrointestinal tract of pelagic and
demersal fish from the English Channel. Marine
Pollution Bulletin 67(1-2): 94-99.
Lusher,
A.L., O'Donnell, C., Officer, R. & O'Connor, I. 2016. Microplastic
interactions with North Atlantic mesopelagic fish. ICES Journal of Marine Science 73(4): 1214-1225.
Macieira,
R.M., Oliveira, L.A.S., Cardozo-Ferreira, G.C., Pimentel, C.R., Andrades, R.,
Gasparini, J.L., Sarti, F., Chelazzi, D., Cincinelli, A. & Gomes, L.C. 2021. Microplastic and
artificial cellulose microfibers ingestion by reef fishes in the Guarapari Islands, southwestern Atlantic. Marine Pollution Bulletin 167: 112371.
Matupang, D.M., Zulkifli, H.I.,
Arnold, J., Lazim, A.M., Ghaffar, M.A. & Musa, S.M. 2023. Tropical sharks
feasting on and swimming through microplastics: First evidence from
Malaysia. Marine Pollution Bulletin 189: 114762.
Morgana,
S., Ghigliotti, L., Estévez-Calvar, N., Stifanese, R., Wieckzorek, A., Doyle,
T., Christiansen, J.S., Faimali, M. & Garaventa, F. 2018. Microplastics in
the Arctic: A case study with sub-surface water and fish samples off Northeast
Greenland. Environmental Pollution 242: 1078-1086.
Nematollahi, M.J., Keshavarzi, B., Moore, F., Esmaeili, H.R., Saravi, H.N. & Sorooshian, A. 2021. Microplastic fibers in the gut of
highly consumed fish species from the southern Caspian Sea. Marine
Pollution Bulletin 168: 112461.
Nootmorn,
P., Sumontha, M., Keereerut, P., Jayasinge, R., Jagannath, N. & Sinha, M.K.
2008. Stomach content of the large pelagic fishes in the bay of Bengal. The Ecosystem-Based Fishery Management in
the Bay of BengalIOTC-2008-WPEB-11.
Parr,
C.S., Wilson, N., Leary, P., Schulz, K.S., Lans, K., Walley, L., Hammock, J.A.,
Goddard, A., Rice, J., Studer, M., Holmes, J.T.G. & Corrigan Jr., R.J.
2014. The encyclopedia of life v2: Providing global access to knowledge about
life on earth. Biodiversity Data Journal https://doi.org/10.3897/BDJ.2.e1079
Rahmawati,
N.H. & Patria, M.P. 2019. Microplastics dissemination from fish Mugil dussumieri and mangrove water of
Muara Teluknaga, Tangerang, Banten. Journal
of Physics: Conference Series 1282: 012104.
Rochman,
C.M., Hoh, E., Kurobe, T. & Teh, S.J. 2013. Ingested plastic transfers
hazardous chemicals to fish and induces hepatic stress. Scientific Reports 3: 3263.
Roy, P.K., Hakkarainen,
M., Varma, I.K. & Albertsson, A.C. 2011. Degradable polyethylene: Fantasy
or reality. Environmental Science &
Technology 45(10): 4217-4227.
Ryan, P.G. 2015. A brief
history of marine litter research. Dlm Marine Anthropogenic
Litter, disunting oleh Bergmann, M., Gutow, L. & Klages, M. Springer, Cham. hlm.1-25.
Sarijan,
S., Azman, S., Mohd Said, M.I. & Lee, M.H. 2019. Ingestion of microplastics
by commercial fish in Skudai River, Malaysia. Environment Asia 12(3): 75-84.
Sbrana,
A., Valente, T., Scacco, U., Bianchi, J., Silvestri, C., Palazzo, L., De Lucia,
G.A., Valerani, C., Ardizzone, G. & Matiddi, M. 2020. Spatial variability
and influence of biological parameters on microplastic ingestion by Boops boops (L.) along the Italian
coasts (Western Mediterranean Sea). Environmental
Pollution 263: 114429.
Smith,
M., Love, D.C., Rochman, C.M. & Neff, R.A. 2018. Microplastics in seafood
and the implications for human health. Current
Environmental Health Reports 5(3): 375-386.
Su,
L., Deng, H., Li, B., Chen, Q., Pettigrove, V., Wu, C. & Shi, H. 2019. The
occurrence of microplastic in specific organs in commercially caught fishes
from coast and estuary area of east China. Journal
of Hazardous Materials 365: 716-724.
Sundaray,
J.K., Rather, M.A., Kumar, S. & Agarwal, D. 2021. Recent Updates in Molecular Endocrinology and Reproductive Physiology
of Fish: An Imperative Step in Aquaculture. Singapore:
Springer.
Suratman,
S. & Latif, M. 2015. Reassessment of nutrient status in Setiu Wetland,
Terengganu, Malaysia. Asian Journal of
Chemistry 27(1): 239-242.
Topçu, E.N., Tonay,
A.M., Dede, A., Öztürk, A.A. & Öztürk, B. 2013. Origin and abundance of
marine litter along sandy beaches of the Turkish Western Black Sea Coast. Marine Environmental Research 85: 21-28.
Van
Colen, C., Vanhove, B., Diem, A. & Moens, T. 2020. Does microplastic
ingestion by zooplankton affect predator-prey interactions? An experimental
study on larviphagy. Environmental
Pollution 256: 113479.
Vital,
S.A., Cardoso, C., Avio, C., Pittura, L., Regoli, F. & Bebianno, M.J. 2021.
Do microplastic contaminated seafood consumption pose a potential risk to human
health? Marine Pollution Bulletin 171: 112769.
Wagner,
J., Wang, Z.M., Ghosal, S., Rochman, C., Gassel, M. & Wall, S. 2017. Novel
method for the extraction and identification of microplastics in ocean trawl
and fish gut matrices. Analytical Methods 9(9): 1479-1490.
Wieczorek,
A.M., Morrison, L., Croot, P.L., Allcock, A.L., Macloughlin, E., Savard, O., Brownlow, H. & Doyle, T.K.
2018. Frequency of microplastics in mesopelagic fishes from the Northwest
Atlantic. Frontiers in Marine Science https://doi.org/10.3389/fmars.2018.00039
Woodall, L.C.,
Sanchez-Vidal, A., Canals, M., Paterson, G.L., Coppock, R., Sleight, V.,
Calafat, A., Rogers, A.D., Narayanaswamy, B.E. & Thompson, R.C. 2014. The
deep sea is a major sink for microplastic debris. Royal Society Open
Science 1(4): 140317.
Wright,
S.L. & Kelly, F.J. 2017. Plastic and human health: A micro issue? Environmental Science & Technology 51(12): 6634-6647.
Zhao,
S., Wang, T., Zhu, L., Xu, P., Wang, X., Gao, L. & Li, D. 2019. Analysis of
suspended microplastics in the Changjiang Estuary: Implications for riverine
plastic load to the ocean. Water Research 161: 560-569.
*Pengarang untuk surat-menyurat; email: syafiqmusa@ukm.edu.my
|